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Abstract

An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to elec-
tromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In
particular, new strategies for the air–dielectric interface treatment and the near-to-far-field (NFF) transformation are pre-
sented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed.
Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation.
Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-
order methods, and can save computational resources.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

As the most standard algorithm, the traditional finite-difference time-domain (FDTD) method [1,2], which
is explicit second-order-accurate in both space and time, has been widely applied to electromagnetic compu-
tation and simulation. The main advantages of the FDTD-based techniques for solving electromagnetic prob-
lems are computational simplicity and low operation count. Furthermore, it is very well suited to analyze
transient problems and is very good at modeling inhomogeneous geometries. Most important of all, the
method can readily be implemented on the massive computers.

However, the FDTD method has two primary drawbacks, one is the inability to accurately model
curved complex surfaces and material discontinuity by using the staircasing approach with structured grids,
and another is the significant accumulated errors from numerical instability, dispersion and anisotropy.
Hence fine grids must be required to obtain satisfying numerical results, which leads to vast memory
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2006.11.027

* Corresponding author. Tel.: +86 551 510 6294.
E-mail address: ws108@ahu.edu.cn (W. Sha).

mailto:ws108@ahu.edu.cn


34 W. Sha et al. / Journal of Computational Physics 225 (2007) 33–50
requirements and high computational costs, especially for electrically large domains and for long-term
simulation.

For the first pitfall, a variety of alternative methods in conjunction with unstructured grids are proposed to
reduce the inaccuracy owing to the staircase approximation, including finite-volume time-domain (FVTD) [3–
5], finite-element time-domain (FETD) [6–8], and discontinuous Galerkin time-domain (DGTD) methods [9–
11]. First of all, in the FVTD method, the Maxwell’s equations are written in the conservative form. The fields,
located generally at the center of a cell, are evaluated as the sum of fluxes taken at the faces of the cell. Yet, the
method fails in being at the same time, stable, nondissipative and easily extendible to high-order accuracy.
Secondly, the FETD approach expresses the Maxwell’s equations by a variational formulation. Although
the generated nondiagonal mass-matrices have been accelerated by using the accurate mass lumping tech-
nique, application of the technique to high-order approximation is still not obvious. Thirdly, the DGTD
method uses piecewise high-order polynomials on quadrilateral or triangular elements for spatial discretiza-
tion of the Maxwell’s equations and uses implicit Runge–Kutta (R–K) or explicit leap-frog method for time
integration. It can achieve high-order accuracy and can be easy to handle complex geometries. However, the
DGTD is based on the FE type mesh, more storage and number of floating point operations per mesh point
are required. Besides, high-order symplectic scheme for temporal discretization is an ongoing work.

To overcome the second problem, other high-order spatial discretization strategies have been put forward.
For example, based on orthonormal wavelet expansions, a multiresolution time-domain (MRTD) method [12]
was advanced. Yet, the method is difficult to handle material interface for modeling the three-dimensional
complex objects. Another approach is the staggered fourth-order FDTD method [13,14], which retains the
simplicity of the original Yet algorithm and can save computational resources with coarse grids compared
to the traditional FDTD method. However, the approach must set lower Courant–Friedrichs–Levy (CFL)
number to comply with the stability criterion.

In sum, the developed spatial discretization methods above are not enough for optimum electromagnetic
simulation, for one reason that the implicit R–K method implemented in the temporal direction to some
extent destroys the symplectic structure of the electromagnetic system, and for another reason that the non-
dissipative leapfrog algorithm for time integration only has second-order accuracy. Hence developing energy-
preserving high-order time-schemes for matching high-order space-schemes is necessary. The symplectic
schemes [15–20] include a variety of different temporal discretization strategies designed to preserve the global
symplectic structure of the phase space for a Hamiltonian system. They have demonstrated their advantages
in numerical computation for the Hamiltonian system, especially under long-term simulation. Since Max-
well’s equations can be written as an infinite dimensional Hamiltonian system, a stable and accurate solution
can be obtained by using the symplectic schemes, which preserve the energy of the Hamiltonian system
constant.

As a numerical integration scheme, the symplectic integrator [21–23] and multi-symplectic integrator
[24–27] have been introduced to the computational electromagnetism. Recently, a direct symplectic integrator
[28,29] employed to analyze the waveguide’s eigenmode has been successfully realized by Hirono, and the sym-
plectic finite-difference time-domain (SFDTD) scheme is nondissipative and saves memory. Then the
improved exponential operator coefficients [30] optimize the symplectic integrator. Moreover, the total field
and scattered field technique [31,32] further promotes the practical utilization of the scheme to the three-
dimensional electromagnetic simulation.

In this paper, the SFDTD scheme is used to solve the electromagnetic radiation, penetration and scattering
problems. To efficiently implement the scheme, required and feasible equations are derived. In particular, new
strategies for the air–dielectric interface treatment and the near-to-far-field (NFF) transformation are pro-
posed. By using the SFDTD scheme, the propagation of one-dimensional Gaussian pulse, the radiation of
three-dimensional vertical electric dipole, and the scattering of three-dimensional perfectly conducting cube
and dielectric sphere are simulated.

The paper is organized as follows. The general formulations of the SFDTD scheme, the air–dielectric inter-
face treatment, the perfectly matched layer (PML) absorbing boundary condition (ABC), the total field and
scattered field (TF–SF) technique, and the NFF transformation are specified in Section 2. The comparisons to
other methods are analyzed in Section 3, followed by the numerical results presented in Section 4. Finally,
summary is concluded in Section 5.
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2. Theory

2.1. General formulations

A function of space and time evaluated at a discrete point in the Cartesian lattice and at a discrete stage in
the time step can be notated as
F ðx; y; z; tÞ ¼ F nþl=mðiDx; jDy ; kDz; ðnþ slÞDtÞ; ð1Þ

where Dx, Dy, and Dz are, respectively, the lattice space increments in the x, y, and z coordinate directions, Dt is
the time increment, i, j, k, n, l, and m are integers, nþ l=m denotes the lth stage after n time steps, m is the total
stage number, and sl is the fixed time with respect to the lth stage.

For the spatial direction, the explicit fourth-order-accurate difference expressions in conjugation with the
staggered Yee lattice are used to discretize the first-order spatial derivatives, as follows:
oF nþl=m

od

� �
h

¼ 9

8
� F nþl=mðhþ 1=2Þ � F nþl=mðh� 1=2Þ

Dd
þ�1

8
� F nþl=mðhþ 3=2Þ � F nþl=mðh� 3=2Þ

3Dd
þOðD4

dÞ;

ð2Þ

where d ¼ x; y; z and h ¼ i; j; k.

For the temporal direction, a helicity Hamiltonian [33] for the Maxwell’s equations in homogeneous, loss-
less, and sourceless medium is introduced as
GðH;EÞ ¼ 1

2

1

e
H � r �Hþ 1

l
E � r � E

� �
; ð3Þ
where E ¼ ðEx;Ey ;EzÞT is the electric field vector, H ¼ ðHx;H y ;H zÞT is the magnetic field vector, and e and l
are the permittivity and permeability of the medium.

Symplectic integrator can be generated starting from the canonical Euler–Hamilton equations of the form
oH

ot
¼ � oG

oE
;

oE

ot
¼ oG

oH
: ð4Þ
According to the variational principle, (4) can be rewritten as
o
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where f0g3�3 is the 3� 3 null matrix, and R is the 3� 3 matrix representing the three-dimensional curl
operator.

Using the product of elementary symplectic mapping, the exact solution of (5) from t ¼ 0 to t ¼ Dt can be
approximately constructed [16]
expðDtðU þ V ÞÞ ¼
Ym
l¼1

expðdlDtV Þ expðclDtUÞ þOðDpþ1
t Þ; ð8Þ
where cl and dl are the constant coefficients of the symplectic integrator, and p is the order of the approxima-
tion. Here we use m ¼ 5 and p ¼ 4, a five-stage fourth-order symplectic integrator is obtained. The coefficients
can be found by using the Baker–Campbell–Hausdorff (BCH) formula [16,17,20].

In order to get the simplified SFDTD formulations, the scaled electric field vector Ê is defined by the fol-
lowing change-of-variable formula:
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Ê ¼
ffiffiffiffiffi
e0

l0

r
E; ð9Þ
where e0 and l0 are the permittivity and permeability of free space.
The SFDTD scheme, which is explicit fourth-order accurate in both space and time, can be obtained by the

discretization approaches above. The detailed expression of the x component of the scaled electric field Ê at
the lth stage can be written as
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where �er denotes the averaged relative permittivity at point ðiþ 1
2
; j; kÞ. For the cubic lattice case,

Dx ¼ Dy ¼ Dz ¼ Dd and CFLx ¼ CFLy ¼ CFLz ¼ CFLd. The uniform constant CFLd is called the CFL
number.

Compared with the Hirono’s scheme using four different averaged permittivities in Ref. [29], our scheme
using the only averaged permittivity can save considerable memory. With the help of our scheme, the compu-
tational complexity of Eq. (10) is reduced from O(8) to O(5) in every stage.

2.2. Air–dielectric interface treatment

Many efforts to deal with the air–dielectric interface for high-order difference have been made [34–38]. The
common idea on the problem is to derive the one-sided difference operators, moreover, the instability can be
partially solved by introducing dissipative time integration [34] or filtering approach [35]. However, accurate
and efficient numerical experiments relative to the three-dimensional scattering problems have not been ver-
ified. Here we propose another applicable strategy to solve the problem, which not only can achieve accurate
results, but also places little additional computation on the original SFDTD scheme.

The integral form of the Ampere’s law can be defined as (14) and the general Ampere’s contours are drawn
in Fig. 1
o

ot

Z Z
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p

I
C

H � dL; ð14Þ
where er are the local relative permittivities over the patch S, S can be patch S1 (dark gray) or patch S2 (both
light gray and dark gray), and C can be contour C1 (one arrow) or contour C2 (double arrows).

The treatment of material discontinuity is based on the following assumption:

(1) Magnetic field value at the midpoint of one side of the contour equals the averaged value of the magnetic
field component along the side.



Fig. 1. The general Ampere’s contours for the SFDTD scheme, where the dots denote Êx, the horizontal arrows denote Hy, and the
vertical arrows denote Hz.
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(2) Electric field value in the center of the contour equals the averaged value of the electric field component
over the corresponding patch.

(3) Permittivity in the center of the contour equals the averaged permittivity over the corresponding patch.

Applying the Ampere’s law to both the contour C1 and the contour C2, the formulation (14) can be con-
verted to
1

AS1

Z Z
S1

er dS1 � Ênþl=m
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where AS1
and AS2

are, respectively, the area of S1 and the area of S2.
In view of the fact that the integral form of the Maxwell’s equations is identical to the differential form of

the Maxwell’s equations, we adopt weighting method for the integral equations (15) and (16) to derive the dis-
cretized differential equation (10). By adding (15) multiplied by 9/8 to (16) multiplied by �1/8, the averaged
relative permittivity �er in (10) can be expressed as
�er ¼
9

8AS1

Z Z
S1

er dS1 �
1

8AS2

Z Z
S2

er dS2: ð17Þ
Using little CPU time, the integral can be computed at the initial process by refined subcell modeling. In
addition, the averaged conductivity can be treated in the same way.

2.3. Perfectly matched layer absorbing boundary condition

The PML technique [39–41] is very efficient for absorbing electromagnetic wave and solving the unbounded
problems. The formulation of each subcomponent in the PML region can be deduced, if the basic
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formulations, such as (10), are extended for the lossy medium and each field component is split into two sub-
components. The discretized z subcomponent of the Êx field in the PML region can be deduced as
Ênþl=m
xz iþ 1

2
; j; k

� �
¼ exp �dl

Dtrz iþ 1
2
; j; k

� �
e0

� �
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where rz is the local electric conductivity at ðiþ 1
2
; j; kÞ in the PML region. Polynomial conductivities are em-

ployed varying from zeros at the vacuum-layer interface to rzm at the outer side of PML layer, i.e.
rzðqÞ ¼ rzm
q
v

� �b

; ð19Þ
where v is the layer thickness, q is the distance from the interface, and b is the polynomial order.
2.4. Total field and scattered field technique

Without loss of generality, it can be assumed that an incident plane wave propagates along the z direction
and the electric field is polarized along the x direction. The relative topic about the TF–SF technique for the
SFDTD scheme can be found in [31,32].
2.4.1. One-dimensional incident field

The incident electric field Êx;inc is added at a source point ks and the one-dimensional equation in free space
can be written as
Ênþl=m
x;inc ðkÞ ¼ Ênþðl�1Þ=m

x;inc ðkÞ � az1 � Hnþl=m
y;inc k þ 1

2

� �
� H nþl=m

y;inc k � 1

2

� �� �

� az2 � H nþl=m
y;inc k þ 3

2

� �
� H nþl=m

y;inc k � 3

2

� �� �
; ð20Þ

Ênþl=m
x;inc ðksÞ ¼ Wnþl=mððnþ slÞDtÞ; sl ¼

Xl

r¼1

cr; ð21Þ
where Hy;inc is the incident magnetic field, W is a function of time, and the cr has been defined in (8).
Likewise, the one-dimensional PML ABC can be derived through (18).
2.4.2. Three-dimensional source conditions
The source conditions to be derived depend on whether the field components are the TF quantities or the

SF quantities. The field components must be modified according to the requirement of the continuity across
the TF–SF interface. For example, as shown in Fig. 2, the source conditions for the Êx field at the plane k ¼ k0

are given as follows:
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Fig. 2. The interface of TF–SF is located at the plane k ¼ k0, where the arrows denote Êx, the circles denote Hy, and the dashed denotes
the interface. The TF region and the SF region are located, respectively, at the top (including the interface) and at the bottom of the
interface.
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Following the similar manner, the source conditions for the other field components can be deduced.

2.5. Near-to-far-field transformation

Based on the electromagnetic equivalence principle, the NFF transformation [42,43] is an effective method
to get the far-field scattering data. We use six-sided rectangular locus to enclose the structure of interest in the
SF zone of the FDTD lattice, and then calculate the equivalent phasor currents using discrete Fourier trans-
formation (DFT) applied to the computed tangential electromagnetic fields. The equation of the DFT can be
defined as
Ê
^

xðf Þ ¼
XT

n¼0

Xm

l¼1

Ênþl=m
x ððnþ slÞDtÞ expð�j2pf ðnþ slÞDtÞ; ð25Þ
where Ê
^

xðf Þ is the phasor scaled electric field component, and T is the total time step equal to several wave
periods at the desired frequency f .

Considering the electric and magnetic fields are interleaved in the space lattice at intervals of half space
increments, we must use efficient interpolation method to obtain the values of the scattered field components
at the same location. At one virtual plane k ¼ k1 on the rectangular locus, the one-dimensional fourth-order
cubic interpolation formula can be defined as
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where Ênþl=m
x is the averaged value of the scaled electric field component Ênþl=m

x .
The two-dimensional fourth-order interpolation formula can be derived by the tensor product of the one-

dimensional formulae along two orthogonal directions. As shown in Fig. 3, the weighting coefficient W x;y of
the interpolation node is the scalar product of two weighting coefficients of the corresponding projection
nodes, i.e.
W x;y ¼ W xW y ; x 2 ½i� 1 : iþ 2�; y 2 k1 �
3

2
: k1 þ

3

2

� �
; ð27Þ
where W x;y satisfies
P

W x;y ¼ 1.



Fig. 3. The two-dimensional cubic interpolation in one cell, where the square denotes the interpolated node, and the dotted denotes one of
the interpolation nodes.
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Thus the two-dimensional interpolation formula can be expressed in the form
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where Hnþl=m
x is the averaged value of the x component of magnetic field Hnþl=m. Following Eqs. (26) and (28),

the interpolation formulae for the other electromagnetic filed components can be derived.

3. Comparisons to other methods

Numerical stability and dispersion conditions for the SFDTD scheme have been analyzed in Ref. [29]. The
comparisons of numerical stability and dispersion between the SFDTD scheme and the traditional FDTD
method and the staggered high-order FDTD method [13,14] are presented.

The CFL number of the SFDTD scheme is 0.74312 compared with 0.57735 for the traditional FDTD
method. The high-order FDTD method, which is second-order accurate in time and fourth-order accurate
in space, is referred to as FDTD(2,4). The CFL number of the FDTD(2,4) method is 0.49487, lower than that
of the SFDTD scheme.

Using the uniform space increment and stability criterion CFLd ¼ 0:5, Fig. 4 shows relative phase velocity
error as a function of points per wavelength (PPW) for a plane wave traveling at h ¼ 0� and / ¼ 45�. What is
more, Fig. 5 shows the relative error at / ¼ 0� versus the propagating angle h with the PPW=10. Next we change
the point numbers to be 8, 10, and 12 in the x, y, and z directions, reset the CFL number to be CFLx ¼ 0:4,
CFLy ¼ 0:5, and CFLz ¼ 0:6, then redraw the relative error at h ¼ 45� versus the propagating angle / in Fig. 6.

According to Figs. 4–6, the SFDTD scheme has less dispersion than both the traditional FDTD method
and the FDTD(2,4) method. Accordingly, the SFDTD scheme allows coarser grids within a given error
bound, which in turn results in shorter CPU time and less storage.
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The symplectic integrator is superior to the fourth-order-accurate R–K method [44] in the temporal direc-
tion. Firstly, in view of the amplification factor, the symplectic scheme is nondissipative, but the four-stage
R–K method is dissipative. Hence the R–K method produces amplitude error. Secondly, the R–K method
requires additional memory in contrast with the SDTD scheme.

In 1989, Fang proposed another high-order-accurate FDTD method referred to as FDTD(4,4) method [45],
which is fourth-order accurate in both space and time. Compared with the FDTD(4,4) method using third-
order spatial derivatives to substitute for third-order correctional temporal derivatives, the SFDTD scheme
using the simple air–dielectric treatment is easier to treat the varying of permittivity and permeability in
the inhomogeneous domain.
4. Numerical results

4.1. One-dimensional propagation problems

The one-dimensional hard source can be given by
Ênþl=m
x;inc ðksÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
e0=l0

p
exp � 1

2
� ðnþ slÞ � 40

10

� �2
" #

: ð29Þ
Long-term simulation is implemented with CFLz ¼ 0:48, Dz ¼ 1 cm, and T ¼ 3000. By using the perfect elec-
tric conductor (PEC) boundary, the one-dimensional resonant cavity is constructed. In Fig. 7a, the nonphys-
ical oscillation is introduced into the solution of the traditional FDTD method and the FDTD(2,4) method.
Contrarily, the SFDTD scheme keeps stable and accurate.
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To verify the energy-conserving characteristic hold for the symplectic scheme, the error in energy distribu-

tion defined by g ¼ 10log10
1
2
jÊ
^

x;incðf Þ=W
^

ðf Þj2 þ 1
2
jH
^

y;incðf Þ=W
^

ðf Þj2 � 1

����
���� is illustrated in Fig. 7b. Here the PML

ABC is employed. In view of the smaller fluctuation and lower error, the SFDTD scheme better preserves the
symplectic structure of the electromagnetic system. But the explicit R–K method, which is explicit fourth-
order accurate in both space and time, is dissipative. Hence, as the time step increases, the energy of the elec-
tromagnetic system computed by the R–K method is gradually attenuated.
4.2. Three-dimensional radiation problems

The electric pole as soft source is implemented by (30) using the uniform space increment Dd.
Ênþl=m
x ðksÞ ¼ Ênþl=m

x ðksÞ � 2� 10�10dl � CFLd � exp � ðnþ slÞDt

s0

� 3

� �2
" #

½ðnþ slÞDt � 3s0�
s2

0D
2
d

; ð30Þ
where s0 ¼ 2� 10�9 s.
We consider a computational domain of 24� 24� 24 cells of vacuum, surrounded by 10-cell PML layers.

The vertical dipole is located near the center of the domain at the source point ks ð12þ 1
2
; 12; 12Þ, and the

recorded Ex field is located 2 cells from the absorbing boundary of the computational domain at point
ð12þ 1

2
; 12; 22Þ. With the space increment Dd ¼ 10 cm and the CFL number CFLd ¼ 0:5, the waveforms of

the Ex field within 20 ns are given in Fig. 8. The SFDTD scheme reduces 70% of global L2 error compared
to the traditional FDTD method.

The point ks and the absorbing boundary are relocated, respectively, 2 m and 0.2 m form the recorded Ex field,
and the simulation time is chosen to be 30 ns. The traditional FDTD method occupies 108� 108� 108 cells with
Dd ¼ 5 cm and CFLd ¼ 0:5, by contrast, the SFDTD scheme occupies 66� 66� 66 cells with Dd ¼ 10 cm and
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Fig. 8. The radiation field of the vertical electric dipole: Dd ¼ 10 cm and CFLd ¼ 0:5.



Table 1
The comparisons of computational statistics with the same global L2 error

Memory (MB) Time (s)

FDTD 173 382
SFDTD 50 96

For the traditional FDTD method, 108� 108� 108 cells, Dd ¼ 5 cm, and CFLd ¼ 0:5, by contrast, for the SFDTD scheme, 66� 66� 66
cells, Dd ¼ 10 cm, and CFLd ¼ 0:6.
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CFLd ¼ 0:6. The comparisons of the memory and the CPU time are listed in Table 1. Under the same global L2

error condition, about 70% of computational resources are saved by the SFDTD scheme.
4.3. Three-dimensional scattering problems

4.3.1. Perfectly conducting cube
Here we consider the scattering of a plane wave incident on a perfectly conducting cube with the side length

of 1 m. The settings are taken as Dx ¼ 0:5=6 m, Dy ¼ 0:5=5 m, Dz ¼ 0:5=7 m, CFLx ¼ 0:5736, CFLy ¼ 0:4780,
CFLz ¼ 0:6692, and T ¼ 380. The total domain occupies 55� 54� 57 cells, and the PML layers are spanned
by 10 cells. The solution of the traditional FDTD method disagrees with the solution of moment methods over
the frequency range from 200 MHz to 300 MHz. However, the solution of the SFDTD scheme is accurate
because of the stable time evolution of the Hamiltonian (see Fig. 9).
4.3.2. Lossy dielectric sphere
The example considered is a lossy dielectric sphere with the relative permittivity of 30, the conductivity of

0.3, and the radius of 10 cm. The z-axial electric field component is calculated by the SFDTD scheme through
the DFT equation. The parameter values are fixed as follows: CFLd ¼ 0:7, Dd ¼ 2 cm, and f ¼ 200 MHz. The
solution of the Mie series is given as reference solution. Fig. 10 compares the averaged material solution and
the local material solution. The result obtained by the averaged material strategy given in (17) agrees with the
Mie series solution very well, but the local material solution leads to the presence of peaks at the air–dielectric
interface.

We reset the CFL number to be CFLd ¼ 0:5, then repeatedly compute the Ê
^

xðf Þ field within the lossy
sphere along the z-axis with coordinates x ¼ Dd=2 and y ¼ 0. The uniform space increments are taken as
2.0 cm, 1.0 cm, and 0.5 cm. The FDTD and the SFDTD solutions using the local material (LM), the staircased
model (SM), and the averaged material (AM) are given for comparison. Different from the LM strategy, the
material settings for the SM do not depend on the original positions of the electric field components but the
approximate positions by the staircasing approach. We use two error criterions to evaluate various methods,
which are global relative L2 error and maximal local relative error. As the numerical fault increases, we give
the rank from 1 to 6 for these methods. As indicated in Table 2, we can come to a conclusion as follows:

(i) The smaller space increment we fix, the higher numerical precision we get, no matter what methods we
adopt.

(ii) For both the FDTD method and the SFDTD scheme, the SM strategy obtains lower global error but
higher local error due to the staircase approximation for the curved boundaries. Contrarily, the LM
strategy presents its advantage over the SM strategy for reducing the local error.

(iii) Whatever criterions we apply, the SFDTD scheme using the AM achieves the most accurate results in all
the methods. At least 75% of error is reduced by the averaged SFDTD scheme compared with the aver-
aged FDTD method and those non-averaged SFDTD schemes.

Based on the above analysis and numerical results in Table 2, the proposed strategy is efficient for treating
the heterogeneous geometries.
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Table 2
The comparisons of the FDTD method and the SFDTD scheme using the local material (LM), the staircased model (SM), and the
averaged material (AM)

Method Dd (cm) ErrL2
Rank ErrMax Rank

FDTD (LM) 2.0 8:04� 10�2 1:82� 10�1

FDTD (LM) 1.0 3:59� 10�2 5 9:55� 10�2 2
FDTD (LM) 0.5 2:17� 10�2 6:40� 10�2

FDTD (SM) 2.0 5:77� 10�2 3:38� 10�1

FDTD (SM) 1.0 2:96� 10�2 3 2:54� 10�1 6
FDTD (SM) 0.5 1:66� 10�2 1:14� 10�1

FDTD (AM) 2.0 7:24� 10�2 3:16� 10�1

FDTD (AM) 1.0 3:64� 10�2 4 1:14� 10�1 4
FDTD (AM) 0.5 1:77� 10�2 1:03� 10�1

SFDTD (LM) 2.0 8:21� 10�2 2:11� 10�1

SFDTD (LM) 1.0 3:76� 10�2 6 1:05� 10�1 3
SFDTD (LM) 0.5 2:26� 10�2 6:80� 10�2

SFDTD (SM) 2.0 5:60� 10�2 3:05� 10�1

SFDTD (SM) 1.0 2:88� 10�2 2 2:50� 10�1 5
SFDTD (SM) 0.5 1:62� 10�2 1:15� 10�1

SFDTD (AM) 2.0 1:38� 10�2 4:49� 10�2

SFDTD (AM) 1.0 7:17� 10�3 1 2:49� 10�2 1
SFDTD (AM) 0.5 2:85� 10�3 1:42� 10�2

The global relative L2 error ðErrL2
Þ and the maximal local relative error ðErrMaxÞ are adopted. The lower rank denotes the higher

numerical precision. The uniform space increments are taken as 2.0 cm, 1.0 cm, and 0.5 cm, and the CFL number is chosen to be 0.50.
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4.3.3. Lossless dielectric sphere

The scattering of a plane wave by a lossless dielectric sphere of the relative permittivity er ¼ 2 is analyzed.
The wavelength of the incident wave is 1 m, the radius of the sphere is 0.5 m, the uniform space increment is
Dd ¼ 0:1 m, and the CFL number is CFLd ¼ 0:5.

The z-axial electric field of the lossless dielectric sphere is computed by using different material interface
treatments. According to Fig. 11, our scheme is superior to Hirono’s scheme.

In conjunction with the low-order and the high-order NFF transformation, the SFDTD scheme is used to
calculate the bistatic E-plane RCS of the dielectric sphere. It can be seen from Fig. 12, the high-order NFF
transformation represents better accuracy at the scattering angle from 130� to 180�.

The bistatic H-plane RCS is displayed in Fig. 13. From the figure, it can be inferred that even if using coar-
ser grids, the SFDTD scheme can still acquire high-order accuracy.

5. Conclusion

The SFDTD scheme, which is explicit fourth-order accurate in both space and time, is accurate, energy-
conserving, highly stable, and efficient. On the one hand, the scheme can achieve high-order accuracy by using
the fourth-order spatial difference with the simple Yee lattice. On the other hand, by using the symplectic inte-
grator, the scheme demonstrates desirable numerical performance under long-term simulation. Finally, with
the aid of the air–dielectric interface treatment and the high-order NFF transformation, the accuracy of
the scheme for the near-field and the far-field response is maintained. In short, the SFDTD scheme can save
computational resources by using coarse grids or high CFL number.

The main disadvantage of the scheme is that it requires at least four stages for fourth-order accuracy and
hence four times the work. Fortunately, this can be offset by using coarser grids or improved by constructing
the optimum symplectic integrator.
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